
Isolating Failure-Inducing Combinations in Combinatorial Testing using Test
Augmentation and Classification

Kiran Shakya Tao Xie

North Carolina State University
{kshakya,txie}@ncsu.edu

Nuo Li

ABB Robotics
nuo.li@cn.abb.com

Yu Lei

University of Texas at Arlington
ylei@cse.uta.edu

Raghu Kacker Richard Kuhn

Information Technology Lab, NIST
{raghu.kacker,kuhn}@nist.gov

Abstract—Combinatorial Testing (CT) is a systematic way of
sampling input parameters of the software under test (SUT).
A t-way combinatorial test set can exercise all behaviors of
the SUT caused by interactions between t input parameters or
less. Although combinatorial testing can provide fault detection
capability, it is often desirable to isolate the input combinations
that cause failures. Isolating these failure-inducing combina-
tions aids developers in understanding the causes of failures.
Previous work directly uses classification tree analysis on the
results of combinatorial testing to model the failure inducing
combinations. But in many scenarios, the effectiveness of classi-
fication depends upon whether the analyzed test set is sufficient
for classification. In addition, generating combinatorial tests
for more-than-6-way combination is generally expensive. To
address these issues, we propose an approach that uses existing
combinatorial testing results to generate additional tests that
enhance the effectiveness of classification. In addition, our
approach also includes a technique to reduce the complexity
of the resulting classification tree so that developers can
understand the nature of failure-inducing combinations. We
present the preliminary results of our approach applied on the
TCAS benchmark.

I. INTRODUCTION

A modern software system that is both large and complex

has in general many parameters affecting the behavior of

the overall system (such as configuration values). While

validating the correctness of a software system across its

entire input parameters is desirable, exhaustive testing of

all combinations is not feasible. One practical and efficient

way of dealing with this problem is Combinatorial Testing

(CT) [1]. Given the input parameters that are properly

modeled, t-way CT guarantees that a failure will be detected

if this failure is caused by interaction among t parameters

or less. Although CT can detect failures, it provides little

support for diagnosing causes of failures. Specifically, dur-

ing debugging, developers are interested in those specific

combinations that induce the failures in the software under

test (SUT). We call these combinations failure-inducing
combinations or faulty combinations. Detecting these faulty

combinations manually is generally a difficult task due to

the large input space.

Previous work [2], [3], [4] on diagnosing the causes

of failure has focused on using decision tree classification

to characterize the faulty interactions. But much of the

previous work focuses on applying classification after the

tests have been generated and executed on the SUT. A

common assumption made by the previous work is that the

classification algorithm [5] performs well on combinatorial

testing results. But in certain cases, the number of failing

combinatorial tests might be very small, causing the classi-

fication algorithm to perform poorly. It is well known that

decision tree classification can be biased if the dataset is

highly unbalanced. Furthermore, developers may not know

beforehand the number of parameters that can cause failures

in the SUT. This kind of scenario is common when the SUT

has a large number of parameters that affect its behavior and

failures are caused by interaction among many parameters.

In such cases, CT of higher strength can require more

resources.
In order to address these challenges, we propose an

approach that aids developers in situations where CT alone

cannot enable effective failure diagnosis. We do not make

any assumption regarding the size of faulty combinations

and their natures (such as overlapping between faulty com-

binations). This characteristic makes our approach general

and can be applied in many cases. The only assumption that

we make is that the SUT is deterministic in nature (i.e.,

running the same test multiple times causes the execution

of the SUT to produce the same test output).
In order to improve the effectiveness of classification, our

approach includes a test augmentation technique that gener-

ates new tests using the available failing tests. Typically, the

generated tests are mostly failing tests, thus improving the

result of classification. In addition, our approach includes a

feature selection technique that reduces the complexity of

the resulting decision tree. We measure the complexity of

the resulting decision tree in terms of the number of nodes

in the tree. Developers use the decision tree not only to

predict the fail or pass outcome of a test but also to analyze

it manually for studying the nature of faulty interactions.

Therefore, it is desirable to have a simple decision tree over

a complex one.
This paper makes the following main contributions:

• We propose a test augmentation technique that aids a

classification algorithm in situations where combinato-

rial test results are highly unbalanced.

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.149

620

Figure 1: Overview of our approach

• We propose a feature selection technique to reduce the

complexity of the resulting decision tree.

• We conduct a preliminary study to evaluate our ap-

proach.

II. BACKGROUND

Covering Array. If we assume that the SUT has k input

parameters and each parameter ci has ai discrete possible

values, the total number of possible inputs is
∏i=k

i=1 ai. CT

uses a covering array (CA) to systematically sample the large

input space. A CA(N, k, t, s) is an array of N rows and k
columns, where N is the size of test set, k is the number

of parameters, s is the number of possible values of each

parameter, and t is the strength of CA. Given a strength

t, for any t sub-columns of C, the sub-array covers all the

possible combinations of the corresponding t parameters.

Similarly, a mixed-level covering array (MCA) allows the

parameters to have different number of possible values i.e.

s = {v1, v2, ..., vk} where each ith parameter can take vi
distinct possible values.

Classification Tree. Classification tree [5] is a recursive

partitioning approach to build models that predict class

membership of an input. The input dataset is split according

to the value of an attribute that maximizes the Gain in

information. This splitting of the dataset continues until

no further splitting is possible. There are many possible

definitions for the Gain. We use a popular decision tree

learning algorithm C4.5 [5], which defines the Gain function

for feature ci at node t as Gain(ci, t) = H(t) − H(ci, t),
where H(t) denotes binary entropy at node t. If the prior

probability of a parameter p taking certain value i is pi, then

the entropy for that parameter is given by −∑
i log2pi.

III. APPROACH

Figure 1 shows an overview of our approach. Our ap-

proach consists of four components: Test Augmentation,

Feature Selection, Test Classification, and Ranking. We next

present the details of each component.

A. Test Augmentation

Test Augmentation (TA) is used to improve the dataset

when the classification algorithm performs poorly on the

combinatorial test results. TA is particularly useful when

the classification algorithm is unable to build a decision tree

due to a small number of failing tests compared to passing

tests. Given a failing test, TA uses the one factor one time

(OFOT) [6] technique for generating additional test inputs.

Specifically, if t = (v1, v2, ..., vk) is a test that fails, the

TA generates new tests by replacing each vi with another

values of parameter ci while keeping other parameter values

the same. The rationale is that since the new test generated

by the TA are similar to the failing test, these new test will

also likely be failing tests, thus balancing the combinatorial

test result set. We repeat this step for every failing test. In

order to reduce the overhead, all the existing tests are kept

in a cache, and the redundant tests generated by the TA (if

any) are detected and discarded. If there are m failing tests,

then the TA will generate at most m×
(∑k

i=1 ai − k
)

tests

that in general will be far less than the additional number of

tests required to generate higher strength CT sets. The new

tests are then executed and classified as failing or passing

based on the execution.

B. Feature selection

Not all the parameters of the SUT correlate with the

failures. If the SUT has a large number of parameters, it

is necessary to prune the parameters (or features) in order

to improve the effectiveness of the classification algorithm.

Feature subset selection (FSS) is the process of identifying

and removing irrelevant and redundant information as much

as possible. This process reduces the dimensionality of

the dataset and improves both speed and accuracy of the

learning algorithm. There are a number of feature selection

algorithms in the data mining literature [5]. In our current

work, we have used correlation based feature selection

(CFS) [7]. CFS takes into account the usefulness of indi-

vidual parameters for predicting the class label along with

the level of intercorrelation among them.

C. Test Classification

We use classification tree analysis (CTA) to model fault

combinations. CTA classifies the labeled tests obtained from

both the covering array and test augmentation. The classifi-

cation is based on only the parameters selected by the feature

selection component. The rationale is that classification

based on selected features would result in a simpler decision

tree which can be analyzed by the developers more easily.

We use CTA because it has been used in previous work [2],

[3], [4]. In order to reduce the overfitting problem commonly

found in classification, we use n-fold cross validation [5].

Cross validation essentially builds multiple models from

different subsets of input data and uses the results to

identify the best model. We measure the effectiveness of

the classification tree using F-score, which is a well known

metric computed using two standard metrics:

Recall(R) = #of correctly predicted failing tests
total # of failing tests

Precision(P) = # of correctly predicted failing tests
total # of predicted failingtests

621

Table I: Characteristics of faults

Version 2-way 3-way 4-way 5-way

v16 0/156 1/461 6/1450 14/4309

v26 0/156 0/461 1/1450 18/4309

F -score = 2PR
P+R

D. Ranking

Given a decision tree model, we enumerate all likely

faulty combinations of the SUT. For each leaf node that

indicates a failure, a corresponding likely faulty combination

is computed by taking the conjunction of the parameter

values found in the path from the root node to the leaf node.

We then collect these faulty combinations and rank them

before presenting to the developers. The rank of a faulty

combination is determined by computing its F-ratio. If n is

the total number of tests classified with a combination and m
is the total number of failing tests correctly classified with

this combination, then we define its F-ratio as m/n. The

combinations are then sorted by their F-ratios in descending

order and shown to the developers. We speculate that the

actual faulty combinations are within top ten results.

IV. EVALUATION

In our evaluation, we have used a module of the Traffic

Collision Avoidance System (TCAS) benchmark. TCAS has

been used in other evaluations of testing approaches [8].

TCAS program takes 12 inputs and produces an output that

can be either 0, 1, or 2. The total input combination of the

TCAS is 3× 23 × 3× 2× 4× 102 × 3× 2× 3 = 1036800,

which is extremely large motivating the use of CT. Kuhn

and Okun [8] generated a large number of combinatorial

tests and produced corresponding testing results for 41 faulty

versions of the TCAS program. For each faulty version,

the testing result as failing or passing is determined by

comparing the output of the faulty version with the correct

version. We have used the same versions and test results in

our evaluation.

Next, we present the preliminary results of our approach

on two faulty versions of the TCAS program via version

16 and 26. From the results, we intend to answer following

research questions:

1) RQ1. Does our test augmentation improve the classi-

fication?

2) RQ2. Does feature selection help in reducing the

complexity of the resulting decision tree without com-

promising accuracy?

3) RQ3. Does our overall approach find the faulty com-

binations?

Table I shows the number of failing tests generated by

CT from t = 2 way to t = 5 way tests for versions 16 and

26 of TCAS. We can see that the number of failing tests is

very low compared to the number of passing tests.

In order to answer the research questions, we first ran the

5-way tests and generated an arff file, which is a format

required by Weka [9]. Weka is an open source collection

of algorithms for data mining tasks. We have used Weka’s

J48 tree classification component to generate the decision

tree. Table II shows our evaluation results. We found that

in both versions, Weka (with default settings) could not

generate a decision tree model due to small number of failing

tests. Next, we feed the arff files into our test augmentation

component. Column “TA” shows the total number of new

tests (only unique tests that did not exist in the current CT

suite) generated as well as the number of tests that failed. We

then added the new tests into the original data set and re-ran

the classification algorithm. Column “F1” shows the F-score

of the decision tree in addition to the precision and recall.

The values for these metrics have been shown in format

Precision/Recall/F -Score. This result shows that the test

augmentation can improve the classification, answering our

RQ1.
Table II: Evaluation Results

V TA F1 S1 FS S2 F2

v16 302/357 .81/.67/.73 36/56 8 22/31 0.71/.59/.65

v26 407/407 .81/.79/.80 56/85 10 20/28 0.78/0.72/.74

Furthermore, we measured the complexity of the decision

tree in terms of the number of leaves and nodes in it.

Column “S1” shows the the complexity of the decision tree

in format #leaves/#nodes. For example, for version 26,

the total number of leaves was 56 and the total number

of nodes was 85. Although the classification with the tree

was effective, we found that size of the decision tree was

too huge to be understood by the developers. We then ran

the feature selection algorithm on the dataset. We used

Weka’s implementation of correlation-based feature selec-

tion algorithm (CfsSubsetEval) for feature selection. Column

“FS” shows the number of attributes selected by the feature

selection component. Next, we ran classification using only

the attributes selected by the feature selection. Column “S2”

shows the size of the resulting decision tree and its standard

metric is shown in column “F2”. For version 26, the result

shows that the complexity of the decision tree is reduced

from 85 to 28 nodes. Although the precision, recall, and

F-score were a bit reduced by feature selection, the loss

was not that significant. In addition, the decision tree was

more compact and simpler than the previous decision tree

answering our RQ2.

Finally, to answer RQ3, we used the final decision tree

to enumerate the faulty combinations and rank the com-

binations according to their F-ratios. To verify the results,

we manually analyzed the faulty versions of TCAS to find

faulty combinations. We found it challenging to find the

exact preconditions for failures due to the complexity of

the program code. Therefore, we calculated only necessary

conditions for the failures. For example, Figure 2 shows

622

tcas.c /* v26*/

1. int alt_sep_test(){
2. ...
3. enabled = High_Confidence &&
4. /*(Own_Tracked_Alt_Rate <= OLEV) && BUG */
5. (Cur_Vertical_Sep > MAXALTDIFF);
6. ...

Figure 2: Fault in TCAS version 26

the fault in version 26 of TCAS. Here the fault lies at

Line 4 where the code is commented out. Therefore, the

fault will cause a failure observed at the output only when

HighConfidence=1, OwnTrackedAltRate>OLEV(=600)

and CurVerticalSep>MAXALTDIFF(=600). This combi-

nation was indeed within top 5 in the list generated by

the ranking component. For version 16, our approach could

catch one faulty combination out of two presented in the

code.

V. RELATED WORK

Yilmaz et al. [4] used classification tree to analyze the

results of CAs and detect potential faulty combinations

for complex configuration spaces. They used the results

of classification to build mixed-strength CAs to further

enhance the efficiency of fault characterization. Fouché

et al. [2] presented an improved algorithm for generating

higher-strength arrays that reduces the cost and improves

flexibility by reusing the tests from lower strength arrays.

Mainly, it uses the results of lower strength covering array to

generate higher strength covering array, saving the resources

needed to run the entire tests. Dumlu et al. [3] conjectured

that CAs may not test all t-combinations due to masking
effects: failures that perturb execution so as to prevent other

combination being exercised. They presented an approach

to detect potential masking effects and then generate addi-

tional new CAs that allow previously masked combinations

to be tested. They also use classification tree to isolate

masking combination. Our work differs from these previous

approaches because we a test augmentation and attribute

selection techniques to improve failure classification.

Besides classification using decision tree, there exist other

approaches that use some other techniques to detect the

faulty combinations. Delta debugging [10] is an adaptive

divide-and-conquer approach to locate faulty combinations.

Similarly, Zhang et al. [11] also propose adaptive test

generation that is similar to delta debugging and uses failing

test as seed test to identify faulty combinations. In contrast,

our approach is based on classification model rather than

search-based techniques. Martı́nez et al. [12] define error

locating arrays (ELAs) that can be used to locate faulty

combinations between parameters under assumption that

each parameter has safe values that do not participate the

failures of the SUT. But finding these safe values may

not be trivial for large-system. Ghandehari et al. [13] use

ranking of sub-combinations in a combinatorial test set to

identify potential faulty combinations and use the rank to

further refine suspicious combinations. In contrast, our work

is mainly based on ranking of classification results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that uses results

of CT to isolate the faulty combinations that cause the SUT

to fail. Specifically, we have proposed a general approach

that can be applied to classify the faulty combinations in

scenarios where failures are not commonly observed. Our

approach includes two techniques, test augmentation and

feature selection in the context of CT to enhance classi-

fication. We also presented some promising results of our

approach.

In future work, we plan to infer the constraints among

the faulty combinations rather than just enumerating them.

For example, it is more insightful to report that the SUT

fails whenever c1 > c2 ∧ c3 < 50 instead of enumerating

all combinations of c1, c2, and c3 satisfying the constraint.

Furthermore, we plan to evaluate our approach on larger

subjects to assess the benefit of our approach.

VII. ACKNOWLEDGMENT

This work is supported by two grants (70NANB9H9178

and 70NANB10H168) from Information Technology Lab of

National Institute of Standards and Technology (NIST) and a

grant (61070013) of National Natural Science Foundation of

China, a grant (CCF-0915400) from U.S. National Science

Foundation.

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., pp. 11:1–11:29, 2011.

[2] S. Fouché, M. B. Cohen, and A. Porter, “Incremental covering array
failure characterization in large configuration spaces,” ser. ISSTA,
2009, pp. 177–188.

[3] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter, “Feedback driven
adaptive combinatorial testing,” ser. ISSTA, 2011, pp. 243–253.

[4] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for efficient
fault characterization in complex configuration spaces,” in ISSTA,
2004, pp. 45–54.

[5] V. K. Pang-Ning Tan, Michael Steinbach, Introduction to Data
Mining. Addison-Wesley, 2006.

[6] C. Nie and H. Leung, “The minimal failure-causing schema of
combinatorial testing,” ACM Trans. Softw. Eng. Methodol., pp. 15:1–
15:38, 2011.

[7] H. A. Mark, “Correlation-based feature selection for machine learn-
ing,” Ph.D. dissertation, Univ of Waikato, 1999.

[8] D. R. Kuhn and V. Okun, “Pseudo-exhaustive testing for software,”
in SEW, 2006, pp. 153–158.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” SIGKDD
Explor. Newsl., 2009.

[10] A. Zeller, “Isolating cause-effect chains from computer programs,”
in FSE, 2002, pp. 1–10.

[11] Z. Zhang and J. Zhang, “Characterizing failure-causing parameter
interactions by adaptive testing,” in ISSTA, 2011, pp. 331–341.

[12] C. Martı́nez, L. Moura, D. Panario, and B. Stevens, “Algorithms to
locate errors using covering arrays,” ser. LATIN, 2008, pp. 504–519.

[13] L. S. G. Ghandehari, Y. Lei, T. Xie, D. R. Kuhn, and R. Kacker,
“Identifying failure-inducing combinations in a combinatorial test
set,” in ICST, 2012.

623

